from 1.504 (3) to 1.519 (4) \AA while the two methano bonds at the spiro fusion center are 1.543 (3) and 1.531 (2) \AA. Because of fusion the six ethano bonds are also connecting bonds (between ethano and methano bridges) and range from 1.553 (3) to $1-578$ (4) \AA. The three pure connecting bonds range from 1.521 (3) to 1.523 (3) \AA. In general, this pattern is repeated in the other cage; however, the bicyclo[2.2.2]octanone moiety introduces additional variations. The carbonyl C atom is slightly pyramidalized with $\mathrm{C}(22)$ lying 0.021 (3) \AA out of the plane of the three connecting atoms. The shortest significant contact between the two cages is $2 \cdot 12(4) \AA$ between $\mathrm{H}(10)$ and $\mathrm{H}(12)$.

We thank the Robert A. Welch Foundation (WHW P-074, APM B-963), Air Force Office of Scientific Research (AFSOR-88-0132 to APM) and the Texas Christian University and University of North Texas Faculty Research Committees for financial support.

References

Allinger, N. L., Geise, H. J., Pyckhout, N., Paquette, L. A. \& Gallucci, J. C. (1989). J. Am. Chem. Soc. 111, 1106-1114.
Dekker, T. G. \& Oliver, D. W. (1979). S. Afr. J. Chem. 32, 45-48.
Doms, L., Van den Enden, L., Geise, H. J. \& Van Alsenoy, C. (1983). J. Am. Chem. Soc. 105, 158-162.

Doms, L., Van Hamelrijk, D., Van de Mieroop, W., Lenstra, A. T. H. \& Geise, H. J. (1985) Acta Cryst. B41, 270-274.

Eaton, P. E., Hudson, R. A. \& Giordano, C. J. (1974). J. Chem. Soc. Chem. Commun. pp. 978-979.
International Tables for X-ray Crystallography (1974). Vol. 4. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
MARCHAND, A. P. (1989). Advances in Theoretically Interesting Molecules, Vol. 1, edited by R. P. Thummel, pp. 357-397, and references cited therein. Greenwich, CT: JAI Press.
Nicolet Instrument Corporation (1986). SHELXTL for Desktop 30 (Microeclipse). Report PN-269-1040340, April 1986. Nicolet Instrument Corporation, Madison, Wisconsin, USA.
Pradhan, S. K., Thakker, K. R. \& McPhail, A. T. (1987). Tetrahedron Lett. pp. 1813-1816.
Toromanoff, E. (1980). Tetrahedron, 36, 2809-2931.
Wynberg, H., Boelema, E., Wieringa, J. H. \& Strating, J. (1970). Tetrahedron Lett. pp. 3613-3614.

Acta Cryst. (1990). C46, 256-259

Stereochemistry of Rings. XVII.* Norbornane Derivatives. 1. 2-(p-Methoxyphenyl)-3-phenylbicyclo[2.2.1]heptane (I) and 2-(p-Nitrophenyl)-3-phenylbicyclo[2.2.1]heptane (II)

By Gabriele Bocelli
Centro di Studio per la Strutturistica Diffrattometrica del CNR, Viale delle Scienze, 43100 Parma, Italy

(Received 23 March 1989; accepted 22 May 1989)

Abstract. (I): $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}$, monoclinic, $P_{1} / a, M_{r}=$ $278 \cdot 4, a=22.039$ (2), $b=5.910$ (2), $c=11.722$ (2) \AA, $\beta=92.75(3)^{\circ}, \quad V=1525.0(6) \AA^{3}, \quad Z=4, \quad D_{x}=$ $1.21 \mathrm{~g} \mathrm{~cm}^{-3}, \lambda(\mathrm{Cu} K \alpha)=1.5418 \AA, \mu=5.22 \mathrm{~cm}^{-1}$, $F(000)=600$, room temperature. (II): $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{NO}_{2}$, monoclinic, $P 2_{1} / n, a=9.141$ (2), $b=13.048$ (2), $c=$ 13.091 (3) $\AA, \beta=92 \cdot 47$ (3) ${ }^{\circ}, V=1559.9$ (6) $\AA^{3}, Z=$ $4, \quad D_{x}=1.25 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \lambda(\mathrm{Cu} K \alpha)=1.5418 \AA, \quad \mu=$ $6.06 \mathrm{~cm}^{-1}, F(000)=624$, room temperature. $R=$ 0.049 for 1953 reflections above $2 \sigma(I)$ for compound (I) and $R=0.060$ and $w R=0.068$ for 2169 reflections above $2 \sigma(I)$ for compound (II). Only small conformational differences, due to the differently substituted benzene groups and the methylene bridge, are remarkable in the two six-membered rings of the norbornane skeletons which show boat conformations. The planar phenyl rings are all in equatorial positions and form dihedral angles of

[^0]0108-2701/90/020256-04\$03.00
$43 \cdot 4$ (1) and $51.8(1)^{\circ}$ to each other in (I) and (II) respectively.

Introduction. Extensive structural analysis on norbornane derivatives has been carried out in recent years in view of their increasing importance in organic synthesis. In particular, in the course of studies aimed at the synthesis of rigid systems containing adjacent aromatic nuclei, two derivatives of bicyclo[2.2.1]heptane with two different aryl groups in 2,3 positions were prepared starting from bicycloheptane, aryl bromides and sodium tetraphenylborate under the catalytic action of a Pd complex (Catellani, Chiusoli, Fornasari \& Concari, 1989). In view of the spectroscopic properties and reactivity of these compounds and as part of our program of investigations on ring deformations induced by substituents it has been deemed useful to determine the conformation of the two molecules by X-ray methods.
© 1990 International Union of Crystallography

Experimental. Siemens AED single-crystal diffractometer equipped with an IBM PS2/30 personal computer, prismatic crystals of about $0.3 \times 0.3 \times 0.6$ and $0.4 \times 0.5 \times 0.8 \mathrm{~mm}$ for compounds (I) and (II) respectively, unit-cell parameters resulted from a least-squares fit to 19 reflections ($21 \geq \theta \geq 30^{\circ}$) for compound (I) and to 29 reflections ($14 \geq \theta \geq 39^{\circ}$) for compound (II), reflections measured using a modified version (Belletti, Cantoni \& Pasquinelli, 1988) of the Lehmann \& Larsen (1974) method, nickel-filtered $\mathrm{Cu} K \alpha$ radiation, θ range $3-70^{\circ}$, one check reflection monitored every 50 measurements without significant variations, intensities corrected for Lorentz and polarization effects but not for absorption. Compound (I): 3027 reflections collected (index range: $h-26 / 26, k 0 / 7, l 0 / 12$), 2891 indepen$\operatorname{dent}\left(R_{\text {int }}=0.033\right)$ and 1958 with $I \geq 2 \sigma(I)$ observed. Compound (II): 3091 reflections collected (index range: $h-11 / 10, k 0 / 15,10 / 15), 2964$ independent ($R_{\text {int }}=0.015$), 2176 with $I \geq 2 \sigma(I)$ observed. Direct methods with SHELX76 (Sheldrick, 1976), blockmatrix anisotropic least squares, H atoms found in difference Fourier maps and refined isotropically, $\sum w \Delta F^{2}$ minimized, unit weights for compound (I), weighting scheme $w=1 /\left(\sigma^{2} F+0.01548 F^{2}\right)$ for compound (II), five reflections for compound (I) and seven for compound (II) omitted because probably affected by extinction, $\Delta \rho_{\text {max }} 0.21$ and $0.18 \mathrm{e} \AA^{-3}$ for (I) and (II) respectively, final refinements converged to $R=0.049$ and $S=0.78$ for compound (I) and to $R=0.060, w R=0.068$ and $S=0.66$ for (II), maximum shifts/e.s.d. 0.55 and 0.86 . Atomic scattering factors of SHELX76.*

All calculations performed on an IBM PS2/80 personal computer with the CRYSRULER package (Rizzoli, Sangermano, Calestani \& Andreetti, 1987).

Discussion. Final atomic fractional coordinates are listed in Tables 1 and 2 for compounds (I) and (II) respectively. Bond distances and bond angles are in Table 3. Projections of the molecules with arbitrary numbering schemes are in Figs. 1 and 2.

The geometry of the norbornane moieties is consistent with that reported in other norbornanes. In particular, as observed in other norbornane derivatives [$95 \cdot 55(30)^{\circ}$: Albinati, Zocchi, Germain \& Declercq, 1973; 94.3 (4) and 94.5 (5) ${ }^{\circ}$: Moews, Knox \& Vaughan, 1978; 94•11 (42) ${ }^{\circ}$: Baker \& Wood, 1978; $94 \cdot 4$ (4) and $96 \cdot 6$ (4) ${ }^{\circ}:$ Bocelli, 1984; $96 \cdot 2$ (3), $96 \cdot 6$ (2)

[^1]Table 1. Atomic fractional coordinates $\left(\times 10^{4}\right)$ and $U_{e q}$ values $\left(\times 10^{4} \AA^{2}\right)($ Hamilton, 1959) for compound (I)

	x	y	z	$U_{\text {eq }}$
O1	$1825(1)$	$-80(4)$	$3606(2)$	$573(7)$
C1	$4363(1)$	$-413(5)$	$2877(2)$	$424(9)$
C2	$4573(1)$	$-530(5)$	$1585(2)$	$433(8)$
C3	$5072(1)$	$-2332(6)$	$1678(3)$	$523(11)$
C4	$5610(2)$	$-1431(8)$	$2438(4)$	$632(14)$
C5	$5385(2)$	$-1620(8)$	$3670(3)$	$632(14)$
C6	$4719(1)$	$-2403(6)$	$3449(3)$	$505(10)$
C7	$4797(2)$	$-4096(6)$	$2471(3)$	$547(11)$
C8	$3688(1)$	$-367(5)$	$3065(2)$	$392(8)$
C9	$3286(1)$	$-2124(5)$	$2757(2)$	$452(10)$
C10	$2673(1)$	$-1984(5)$	$2952(2)$	$466(9)$
C11	$2441(1)$	$-67(5)$	$3469(2)$	$428(9)$
C12	$2829(1)$	$1670(5)$	$3795(2)$	$468(10)$
C13	$3443(1)$	$1502(5)$	$3594(2)$	$439(9)$
C14	$1561(2)$	$1928(8)$	$4036(3)$	$646(14)$
C15	$4067(1)$	$-916(5)$	$679(2)$	$434(8)$
C16	$4006(1)$	$-2906(5)$	$55(2)$	$544(11)$
C17	$3525(2)$	$-3195(6)$	$-743(3)$	$626(12)$
C18	$3096(2)$	$-1536(6)$	$-933(3)$	$635(11)$
C19	$3156(1)$	$481(6)$	$-332(3)$	$591(11)$
C20	$3638(1)$	$765(5)$	$463(2)$	$509(10)$

Table 2. Atomic fractional coordinates $\left(\times 10^{4}\right)$ and $U_{e q}$ values $\left(\times 10^{4} \AA^{2}\right)($ Hamilton, 1959) for compound (II)

	x	y	z	$U_{\text {eq }}$
O1	$3195(3)$	$4821(1)$	$8384(1)$	$901(7)$
O2	$4432(2)$	$5671(1)$	$7297(2)$	$925(8)$
N1	$3750(2)$	$4902(1)$	$7553(2)$	$650(6)$
C1	$3210(2)$	$1497(2)$	$4769(2)$	$534(6)$
C2	$1712(2)$	$1441(2)$	$4098(2)$	$554(6)$
C3	$2263(2)$	$1422(2)$	$2991(2)$	$643(8)$
C4	$2859(3)$	$343(3)$	$2784(3)$	$826(10)$
C5	$4260(3)$	$296(2)$	$3502(2)$	$834(10)$
C6	$4359(2)$	$1396(2)$	$3946(2)$	$641(7)$
C7	$3691(2)$	$2044(2)$	$3072(2)$	$667(8)$
C8	$3376(2)$	$2414(1)$	$5473(1)$	$494(5)$
C9	$2643(2)$	$2405(2)$	$6388(2)$	$591(6)$
C10	$2756(2)$	$3210(2)$	$7077(2)$	$613(7)$
C11	$3608(2)$	$4042(2)$	$6837(1)$	$524(6)$
C12	$4363(2)$	$4074(2)$	$5951(2)$	$589(7)$
C13	$4246(2)$	$3263(2)$	$5274(2)$	$582(6)$
C15	$567(2)$	$2238(1)$	$4322(1)$	$552(5)$
C16	$541(2)$	$3206(2)$	$3887(2)$	$723(7)$
C17	$-535(3)$	$3917(2)$	$4115(2)$	$870(9)$
C18	$-1628(3)$	$3653(2)$	$4762(2)$	$871(9)$
C19	$-1629(2)$	$2693(2)$	$5188(2)$	$798(8)$
C20	$-544(2)$	$1990(2)$	$4974(2)$	$665(7)$

and 96.7 (2) ${ }^{\circ}$: Gallucci, Kravetz, Green \& Paquette, 1985], the values of the C3-C7-C6 angles [94•1 (3) and $\left.94.0(2)^{\circ}\right]$ are markedly different from the tetrahedral value. The norbornane skeleton is composed of two fused five-membered rings in envelope conformations or of a six-membered ring held in a boat conformation by a bridging methylene group. Following the Cremer \& Pople (1975) notation the spherical polar set values for the six-membered rings are $Q=0.970(4) \AA, \varphi=-54.4(2)^{\circ}, \quad \theta=88.9(2)^{\circ}$ for compound (I) and $Q=0.978$ (3) $\AA, \quad \varphi=$

Table 3. Bond distances ((\AA) and angles $\left({ }^{\circ}\right)$ for compounds (I) and (II)

	(I)	(II)		(I)	(II)
$\mathrm{Ol}-\mathrm{Cl1}$	1.375 (3)		C6-C7	1.538 (5)	1-529 (4)
$\mathrm{Ol}-\mathrm{Cl} 4$	1.424 (5)		C8-C9	1.401 (4)	1.398 (3)
$\mathrm{Ol}-\mathrm{N} 1$		1.225 (3)	C8- Cl^{3}	1.389 (4)	1.395 (4)
$\mathrm{O} 2-\mathrm{N} 1$		1.235 (2)	C9- Cl 0	1.383 (3)	$1 \cdot 385$ (4)
$\mathrm{N} 1-\mathrm{Cl1}$		1.464 (3)	$\mathrm{Cl0}-\mathrm{Cl} 1$	1.394 (4)	1.380 (3)
$\mathrm{Cl}-\mathrm{C2}$	1.606 (3)	1.596 (3)	C11-C12	1.378 (4)	1.376 (3)
C1-C6	1.549 (4)	1.542 (3)	C12-Cl3	1.388 (3)	$1 \cdot 382$ (4)
$\mathrm{Cl}-\mathrm{C} 8$	1.515 (3)	1.514 (3)	C15-C16	1.388 (4)	$1 \cdot 385$ (3)
C2-C3	1.531 (4)	1.555 (4)	C15-C20	1.386 (4)	1.393 (3)
C2-C15	1.520 (3)	1.513 (3)	C16-C17	1.390 (5)	1.394 (4)
C3-C4	1.543 (5)	1.538 (5)	C17-C18	1.373 (6)	1.381 (4)
C3-C7	1.540 (5)	1.537 (3)	C18-C19	1.388 (5)	1.371 (4)
C4-C5	1.553 (6)	1.557 (4)	C19-C20	1.389 (4)	$1 \cdot 388$ (3)
C5-C6	$1 \cdot 549$ (5)	1.550 (4)			
$\mathrm{Cl1}-\mathrm{O1}-\mathrm{Cl4}$	$117 \cdot 3$ (3)		$\mathrm{Cl}-\mathrm{C} 8-\mathrm{Cl} 3$	119.0 (2)	123.8 (1)
$\mathrm{O} 1-\mathrm{N} 1-\mathrm{O} 2$		123.0 (2)	Cl-C8-C9	124.2 (2)	118.4 (1)
$\mathrm{O} 2-\mathrm{N} 1-\mathrm{Cl1}$		118.7 (1)	C9-C8-C13	116.7 (2)	117.7 (1)
$\mathrm{Ol}-\mathrm{N} 1-\mathrm{Cl1}$		118.3 (1)	C8-C9-C10	121.6 (3)	121.8 (2)
C6-Cl-C8	$115 \cdot 6$ (2)	116.1 (1)	C9- $\mathrm{Cl}^{-}-\mathrm{Cl1}$	$120 \cdot 1$ (2)	118.4 (2)
$\mathrm{C} 2-\mathrm{Cl}-\mathrm{C} 8$	117.9 (2)	115.6 (1)	N1-Cll-Cl0		119.5 (1)
C2-C1-C6	$102 \cdot 3$ (2)	101.9 (1)	O1-C11-C10	115.6 (2)	
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{Cl} 5$	$115 \cdot 5$ (2)	116.5 (1)	$\mathrm{Cl0}-\mathrm{C11}-\mathrm{Cl} 2$	119.4 (2)	121.6 (2)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$101 \cdot 6$ (2)	$102 \cdot 1$ (1)	N1-C11-C12		118.9 (2)
C3-C2-C15	$116 \cdot 5$ (2)	$116 \cdot 5$ (2)	$\mathrm{Ol}-\mathrm{Cll}-\mathrm{Cl} 2$	$125 \cdot 1$ (2)	
C2-C3-C7	$102 \cdot 2$ (2)	$103 \cdot 6$ (2)	$\mathrm{Cl1}-\mathrm{Cl2-C13}$	119.8 (3)	119.3 (2)
C2-C3-C4	109.3 (3)	108.1 (2)	C8-C13-C12	122.4 (3)	121.2 (2)
C4-C3-C7	101.5 (2)	$100 \cdot 9$ (1)	C2-C15-C20	119.4 (2)	119.2 (1)
C3-C4-C5	104.0 (3)	$102 \cdot 6$ (2)	C2-C15-C16	123.0 (2)	123.1 (1)
C4-C5-C6	102.0 (3)	$102 \cdot 9$ (2)	C16-C15-C20	117.6 (2)	117.6 (1)
C1-C6-C5	$107 \cdot 6$ (3)	$108 \cdot 1$ (1)	C15-C16-C17	120.7 (3)	121.2 (2)
C5-C6-C7	100.4 (3)	$102 \cdot 5$ (2)	C16-C17-C18	121.2 (3)	$120 \cdot 1$ (2)
C1-C6-C7	$104 \cdot 1$ (3)	$102 \cdot 3$ (1)	C17-C18-C19	118.9 (4)	119.4 (2)
C3-C7-C6	$94 \cdot 1$ (3)	94.0 (1)	C18-C19-C20	119.7 (3)	120.6 (2)
			C15-C20-C19	121.9 (3)	$121 \cdot 1$ (2)

Fig. 1. Projection of compound (I).

Fig. 2. Projection of compound (II).
$115.0(2)^{\circ}, \theta=90.0(2)^{\circ}$ for (II). These values are very near to those corresponding to an ideal boat conformation ($\theta=90^{\circ}, \varphi=120^{\circ}$). The dihedral angles between the planar fragments $\mathrm{C} 3, \mathrm{C} 2, \mathrm{C}, \mathrm{C} 6$ $(A), \mathrm{C} 3, \mathrm{C} 7, \mathrm{C} 6$ (B) and $\mathrm{C} 3, \mathrm{C} 4, \mathrm{C} 5, \mathrm{C} 6$ (C) are $125.1(3), \quad 122.4(3), \quad 112.4(2)^{\circ} \quad$ and $\quad 124.6(2)$, 123.9 (2), 111.5 (1) ${ }^{\circ}$ for $A-B, B-C$ and $A-C$ in compounds (I) and (II) respectively. These values are comparable with those $[121 \cdot 1(5), \quad 125.0(5)$, 113.9 (6) ${ }^{\circ}$] determined by Kashyap, Watson, Wu \& Bartlett (1984) for a similar derivative. The deformations in the six-membered rings induced by the different substituents and by the methylene bridge with respect to the ideal values reported for a boat conformation (Bucourt, 1974) show some differences in the two derivatives. These differences reverberate on the internal torsion angles which, in going from C 1 to C6 in numerical sequence, are -7.4 (3), -65.9 (3), $75 \cdot 9$ (4), $-5 \cdot 1(4),-68 \cdot 5(3)$ and $77.2(3)^{\circ}$ for compound (I) and $-5.2(2), 75.8(3),-68.6(3)$, $-5 \cdot 3$ (3), $76 \cdot 4$ (3) and $-68 \cdot 1$ (2) ${ }^{\circ}$ for (II).
The benzene rings, which occupy equatorial positions in both compounds, are planar with only slight deviations from planarity and form dihedral angles of 43.4 (1) and $51.8(1)^{\circ}$ to each other in compounds (I) and (II) respectively. The methoxy and nitro groups are tilted by $5.5(2)$ and $6.3(2)^{\circ}$ with respect to their aromatic rings.

In the crystals the molecules of compound (I) are joined together by van der Waals forces only; short contacts of compound (II) are: $\mathrm{H} 9 \cdots \mathrm{Ol}^{\mathrm{i}}=2.53$ (3), $\mathrm{C} 9 \cdots \mathrm{Ol}^{\mathrm{i}}=3.473(3) \AA, \quad \mathrm{C} 9-\mathrm{H} 9 \cdots \mathrm{Ol}^{\mathrm{i}}=151(2)^{\circ} ;$
$\mathrm{H} 9 \cdots 2^{\mathrm{i}}=2.51(3), \quad \mathrm{C} 9 \cdots 2^{\mathrm{i}}=3.459(3) \AA, \quad \mathrm{C} 9-$
$\mathrm{H} 9 \cdots 2^{\mathrm{i}}=151(2)^{\circ}\left[(\mathrm{i})-x+\frac{1}{2}, y-\frac{1}{2},-z+\frac{3}{2}\right]$.

Thanks are due to Professor G. P. Chiusoli for supplying the crystals.

References

Albinati, A., Zocchi, M., Germain, G. \& Declerce, J.-P. (1973). Cryst. Struct. Commun. 2, 585-588.

Baker, R. \& Wood, J. S. (1978). J. Chem. Soc. Perkin Trans. 2, pp. 971-974.
Belletti, D., Cantoni, A. \& Pasquinelli, G. (1988). Gestione on Line di Diffrattometro a Cristallo Singolo Siemens AED con Sistema IBM PS2/30. Internal report 1/88. Centro di Studio per la Strutturistica Diffrattometrica del CNR, Parma, Italy.
Bocelli, G. (1984). Acta Cryst. C40, 1944-1945.
Bocelli, G. \& Rizzoli, C. (1989). Acta Cryst. C45, 1180-1181.
Bucourt, R. (1974). Top. Stereochem. 8, 159-224.
Catellani, M., Chiusoli, G., Fornasari, V. \& Concari, S. (1989). Private communication.

Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
Gallucci, J. C., Kravetz, T. M., Green, K. E. \& Paquette, L. A. (1985). J. Am. Chem. Soc. 107, 6592-6598.

Hamilon, W. C. (1959). Acta Cryst. 12, 609-610.
Kashyap, R. P., Watson, W. H., Wu, C. \& Bartlett, P. D. (1984). Acta Cryst. C40, 861-863.

Lehmann, M. S. \& Larsen, F. K. (1974). Acta Cryst. A30, 580-589.
Moews, P. C., Knox, J. R. \& Vaughan, W. R. (1978). J. Am. Chem. Soc. 100, 260-264.

Rizzoli, C., Sangermano, V., Calestani, G. \& Andreetti, G. D. (1987). J. Appl. Cryst. 20, 436-440.

Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.

Structure of a Pyridyl-Containing Macrobicyclic Molecule, Potential TransitionMetal Complexing Agent and NADH Model Precursor

By J. P. Dutasta, G. Gellon and J. L. Pierre
Laboratoire d'Etudes Dynamiques et Structurales de la Sélectivité, UA CNRS 332, Université Joseph Fourier, BP 53 X, 38041 Grenoble, France

and M. T. Averbuch-Pouchot and A. Durif
Laboratoire de Cristallographie du CNRS associé à l'Université de Grenoble, BP 166 X, 38042 Grenoble, France
(Received 14 March 1989; accepted 19 May 1989)

Abstract

C}_{17} \mathrm{H}_{25} \mathrm{~N}_{5} \mathrm{O}_{2}\), 1,5,9,13,17-pentaazatricyclo[15.3.1.1 ${ }^{7,11}$]docosa-7,9,11-triene-6,12-dione, $\quad M_{r}=$ 331.42, orthorhombic, $P b n 2_{1}, \quad a=10.734$ (9), $b=$ $20 \cdot 806$ (10), $c=7.625$ (6) $\AA, V=1703$ (4) $\AA^{3}, Z=4$, $D_{x}=1.293 \mathrm{Mg} \mathrm{m}^{-3}$, Мо K $\bar{\alpha}, \quad \lambda=0.7107 \AA \AA, \quad \mu=$ $0.095 \mathrm{~mm}^{-1}, F(000)=712, T=294 \mathrm{~K}$, final $R=$ 0.055 for 2702 reflections. The molecule defines a macrocyclic cavity with convergent amine N -atom lone pairs and amide H atoms. The hexahydropyrimidine ring is in a chair conformation and is roughly perpendicular to the main plane defined by the tetraazamacrocycle. The pyridine ring makes an angle of 21.7° to the macrocyclic plane. The molecule provides a well organized cavity for potential metal-ion recognition.

Introduction. Within the past decade, the chemistry of macrocyclic ring systems has developed rapidly, particularly related to host-guest chemistry which mimics biological complexation (Melson, 1979; Lehn, 1988). As part of our efforts to design and synthesize NADH models, we have focused our work on pyridyl-containing polyazamacrocycles (Dutasta, Gellon, Leuchter \& Pierre, 1988). Some have a polycyclic structure as depicted below. (1) is the prototype of a new series of polyazamacrocyclic structures for which the conformation and the molecular shape are of great interest; the macrocyclic cavity must be defined in order to estimate its complexing properties toward metal ions. In this paper we describe the X-ray crystal structure of the pyridylcontaining tetraazamacrobicyclic molecule (1). The hexahydropyrimidine ring introduces rigidity compared to the parent compound (2), and imposes a
well defined conformation. In solution at room temperature, the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra are in agreement with the existence of one preferred rigid conformer.

(1)

(2)

Experimental. The synthesis and the characterization of the macrocyclic molecule (1) is described elsewhere (Dutasta et al., 1988). Crystal size: 0.25×0.32 $\times 0.20 \mathrm{~mm}$. Density not measured. Nonius CAD-4 diffractometer, graphite monochromator. 25 reflections ($10.0<\theta<16.3^{\circ}$) for refining unit-cell dimensions. ω scan, scan width: $1 \cdot 20^{\circ}$, scan speed variable between 0.02 and $0.04^{\circ} \mathrm{s}^{-1}$, total background measuring time: between 28 and 57 s .3390 reflections collected; $3<\theta<30^{\circ} ; h, k, l ; h \max .=17, k$ max. $=$ 33, l max. $=12$. Existence conditions: $h 0 l(h+l=$ $2 n), 0 k l(k=2 n)$. Two orientation ($\overline{2}, 16,0$ and $2,16,0$) and two intensity ($\overline{5} 31$ and $\overline{2}, 16,0$) control reflections with no significant variation. Lorentz and polarization corrections, no absorption correction. Structure solved by direct methods (MULTAN77; Main, Hull, Lessinger, Germain, Declercq \& Woolfson, 1977). H atoms located by difference-Fourier synthesis. Anisotropic full-matrix least-squares refinements (on F),

[^0]: * Part XVI: Bocelli \& Rizzoli (1989).

[^1]: * Lists of structure-factor amplitudes, hydrogen coordinates with isotropic thermal parameters, anisotropic thermal parameters of heavy atoms, bond distances and angles involving H atoms and selected torsion angles have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 52255 (32 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CHI 2HU, England.

